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Abstract 

We describe the strategies and implementation details we employed to parallelize the SPIDER 

software package on distributed-memory parallel computers using the Message Passing Interface 

(MPI). The MPI-enabled SPIDER preserves the interactive command line and batch interface used 

in the sequential version of SPIDER, thus does not require users to modify their existing batch 

programs.  We show the excellent performance of the MPI-enabled SPIDER when it is used to 

perform multi-reference alignment and 3-D reconstruction operations on a number of different 

computing platforms.  We point out some performance issues when the MPI-enabled SPIDER is 

used for a complete 3-D projection matching refinement run, and propose several ways to further 

improve the parallel performance of SPIDER on distributed-memory machines. 

Keywords: 3-D structure determination; Electron microscopy; Parallel computing; Message 

Passing Interface 
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1.  Introduction

SPIDER (System for Processing Image Data from Electron microscopy and Related fields) (Frank

et al., 1996) is one of the most widely used software packages for carrying out single particle 

image reconstruction of three-dimensional (3-D) macromolecular assemblies from cryo-electron 

microscopy (Cryo-EM) image data (Frank, 2006).  Due to the large volume of data and high 

computational complexity involved in such a reconstruction, enabling SPIDER to run in parallel 

on a multi-processor computer system has been an essential part of the SPIDER software 

development.  The development of the shared-memory parallel (SMP) version of SPIDER began 

in 1992.  The SMP version of SPIDER is implemented by manually inserting OpenMP (Chandra et 

al., 2000) directives into the sequential code to achieve loop-level and task-level parallelism.   

Both fine-grain and coarse-grain parallelism have been utilized.   To enhance efficiency, some 

parts of the code (for example, multi-reference 2-D alignment) were modified to provide 

alternative modes of parallelization depending on the amount and size of the input data.  The 

parallel SPIDER code has been used successfully by structural biologists for many years.  

However, in the last few years, the number of large-scale high-performance, shared-memory, 

parallel machines, such as the SGI Origin and Cray T90, has been declining rapidly due to the high 

cost associated with manufacturing and maintaining this type of machines.  Even when they are 

available, the single processor performance on these machines lags far behind the peak 

performance delivered by the latest Intel1 and AMD2 microprocessors.  The current generation of 

shared-memory parallel systems are either extremely expensive (e.g., SGI Altix, Cray X1 and 

NEC SX-6), hence not widely accessible, or equipped with a small number of processors packed 

on a single board (node).  On the other hand, clusters of PCs built on commodity Intel and AMD 

processors and running the Linux operating system have become widely available.  They tend to 

be significantly less expensive than large-scale shared-memory machines.  However, these 

machines do not share memory beyond a single node.  Hence, the SMP version of SPIDER cannot 

be used directly on these machines to take advantage of the vast amount of processing and memory 

resources. 

1 http://developer.intel.com/products/processor/xeon/index.htm
2 http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30579_hi.pdf
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To ameliorate this situation, we developed a parallel version of SPIDER that can be used on 

distributed-memory parallel computers such as the IBM SP, as well as clusters of PCs, by adopting 

the Message Passing Interface (MPI) (Pacheco, 1996) to distribute the data and perform necessary 

communications among different processors.  The use of MPI allows us to reuse most of the 

sequential SPIDER code and make changes only at places that require data distribution and 

communication.  Because MPI is supported by almost all parallel computer vendors, portability of 

the MPI-enabled SPIDER is automatically guaranteed.  We made an effort to maintain the 

sequential SPIDER interactive command line and batch interfaces so that the current SPIDER 

users accustomed to the existing programming style would not need to change their SPIDER batch 

files in order to take advantage of the MPI-enabled SPIDER.  Once the MPI-enabled SPIDER is 

installed on a parallel computer equipped with an MPI library, the user can employ the parallel 

software in the same way the sequential version of SPIDER is used. 

Here we report the progress we have made in terms of the functionality and performance of the 

newly developed MPI version of SPIDER and provide test results that illustrate the tremendous 

advantages of processing electron microscope (EM) data in the MPI mode.  We also discuss the 

difficulties we encountered in the development process and point to general directions that we 

believe should be taken in the design of the next generation of single particle software packages in 

order to ease the parallelization process while achieving the best performance on 

distributed-memory machines. 

The paper is organized as follows.  In Section 2, we will review the basic algorithmic ingredients 

of single-particle reconstruction implemented in SPIDER and the opportunities for their 

parallelization.  In Section 3, we discuss implementation details and demonstrate the performance 

of MPI-enabled SPIDER on two major operations in a structure refinement procedure: alignment 

and 3-D reconstruction.  In Section 4, we discuss a number of challenges encountered in the 

development of the MPI version of SPIDER and suggest several possible ways to improve the 

current implementation. 

2.  Parallelization Strategy

Before we discuss strategies for parallelizing a single-particle reconstruction task on a 
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distributed-memory system, it is worthwhile to examine the mathematical formulation of the 

reconstruction problem and the algorithmic ingredients of the existing SPIDER software.  For the 

purpose of this paper, we assume that isolated two-dimensional (2-D) single-particle images, each 

containing n×n pixels, have been selected from electron micrographs obtained experimentally, and 

the contrast transfer function (CTF) and envelope parameters associated with these images have 

been estimated.  We are concerned only with using the collected 2-D images to compute the 

three-dimensional (3-D) density of the macromolecular assembly.   

Formally, we state the estimation of the 3-D electron density map (denoted by 
3n

Rf ∈ ) of a 

biological molecule from a large number of 2-D electron microscopy projection images, 

2n

i Rb ∈ (i=1,2,…m), of isolated (single) particles with random and unknown orientations as a 

nonlinear optimization problem: 
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where ),,( iiiP ψθφ  is a line integral operator that projects f onto a 2-D plane after f is rotated by a 

set of unknown Euler angles ,  ,  and i i iφ θ ψ .  Subsequently, the projection image is shifted by the 

translational operator ),( ii yxT .  The factor of 1/2 is included merely for convenience.  The 

objective function in (1) is clearly nonlinear due to the coupling between the orientation and 

translational parameters iiiii yx ,,,, ψθφ (i=1,2,…m) and the 3-D density f.  The total number of 

unknown parameters to be computed is mn 53 + .  Note that in single-particle analysis, the number 

of projection data m is far greater than the linear size of the data in pixels, i.e., m>>n.

Currently, the optimization problem (1) is solved in two major phases.  In the first phase, a 

low-resolution initial approximation of f is obtained either experimentally, using the random 

conical tilt technique (Radermacher et al., 1986), or computationally, using either the 

common-lines algorithms (Goncharov et al., 1987; Penczek et al., 1996; van Heel, 1987) or ab

initio alignment of 2-D class averages (Ludtke et al., 2004; Mullapudi et al., 2004).  Although 

some of these approaches can be computationally demanding, no consensus has been reached on 

the best choice among these methods, so we did not attempt to parallelize these methods.  In the 
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second phase, the 3-D structure f and the parameters iiiii yx ,,,, ψθφ (i=1,2,…m) are refined by a 

generalized coordinate descent scheme called 3-D projection matching (Penczek et al., 1994).

The method seeks a minimizer of (1) in two alternating search directions: 

1. Starting from a given low-resolution density approximation 0f , the algorithm performs an 

exhaustive search for the optimal Euler angles iii ψθφ ,,  and a restricted search for the 

optimal translations ii yx ,  associated with each EM projection image bi.  These searches, 

which are implemented using 2-D alignment techniques (Joyeux and Penczek, 2002), are 

carried out by comparing bi with a set of reference projections pj (j=1,2,…,mr) produced by 

computationally re-projecting 0f  in directions specified by a set of prescribed and 

quasi-uniformly distributed Euler angles jjj ψθφ ˆ,ˆ,ˆ  (j=1,2,…,mr).  The set of angles and 

shifts that yields a minimum value of ji pb −  (or, equivalently, a maximum 

cross-correlation coefficient) is assigned to bi.  The SPIDER commands for performing this 

type of orientation search are AP SH or AP MQ.  This often constitutes the most 

time-consuming part of the refinement process.  However, as we will see below, the 

exhaustive search of the orientation parameters can be easily parallelized. 

2. Once each EM projection image has been assigned a set of updated Euler angles jjj ψθφ ˆ,ˆ,ˆ

and shifts jj yx ˆ,ˆ , a new density map 1f  is computed by solving a linear least-squares problem 

=
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m
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preferably by using a version of the iterative algebraic reconstruction technique such as SIRT 

(SPIDER command BP RP), which yields a high-quality estimate of the density map 

(Penczek et al., 2004).  In what follows, we will refer to this step as 3-D reconstruction.  After 

estimation of the resolution (using the Fourier Shell Correlation technique (Saxton and 

Baumeister, 1982)) and appropriate low-pass filtration of the current 3-D structure 1f  are 

completed, 1f   is used to begin the next cycle of the iterative process that results in a sequence 

of steadily improving – in terms of resolution, structures 1 2,  , , lf f f .  The process continues 
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until either changes of orientation parameters are deemed insignificant or the resolution does 

not improve any further. 

The computational complexity for solving (2) is typically much lower than that associated with 

orientation search, although for large linear sizes of volumes it can be substantial.  Unfortunately, 

the parallelization of the 3-D reconstruction step requires global communication to merge 2-D data 

into a 3-D volume.  This can lead to some performance issues, as we will see below.   

A flowchart for the projection matching algorithm is shown in Figure 1.  The rectangular boxes in 

the figure represent data objects required or generated during the refinement process. The oval 

shaped boxes describe the operations performed on the data objects.  The shaded boxes correspond 

to operations that we have parallelized using MPI.  The implementation details of these operations 

will be described in the next section. 

In order to reach high resolution, it is necessary to perform CTF correction (Penczek et al., 1997) 

in the 3-D projection matching procedure.   In SPIDER, this is done by dividing 2-D experimental 

images into groups of images with approximately the same defocus setting.  The 2-D 

multi-reference alignment and 3-D reconstruction are carried out in each defocus group.  The 3-D 

volumes produced in each defocus groups are merged together using the Wiener filtering 

technique (Frank et al., 2000; Penczek et al., 1997).  Because our parallelization strategy does not 

exploit parallelism at the defocus level, we will not discuss CTF correction in this paper.    

Assuming the set of reference projections is available, it is clear from the above problem 

formulation that the orientation search for one experimental image can be done independently 

from that of another.  The first step of the 3-D projection matching method can be easily 

parallelized by dividing the experimental images into several groups and distributing them among 

different processors.  If the set of reference images can be replicated on each processor, then the 

SPIDER multi-reference 2-D alignment can be executed simultaneously and independently on all 

processors.  In this case, one would expect a nearly perfect parallel speedup if the cost of 

distributing the experimental images is relatively small. 

The second step of the 3-D projection matching algorithm requires all experimental images to be 

ultimately merged within a single 3-D volume, regardless of the algorithm used to perform a 3-D 
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reconstruction.  When the reconstruction is carried out by the SIRT algorithm, the 3-D density of 

the macromolecule is updated iteratively as follows 

[ ]
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+ −+←
m

i
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ii

T

i

kk
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1

)()()1( ˆλ , (3) 

where k is the iteration number, λ  is a regularization parameter, and )ˆ,ˆ,ˆ( iiii PP ψθφ=  is a 

projection operator.  Because the shifted 2-D images ib̂  (i=1,2,…m) are distributed on different 

processors during the alignment process, each processor can only perform a partial sum on the 

right hand side of (3).  These partial sums must be collected and added together by a master 

processor before )(k
f  is updated.  In our parallelization scheme, this updated volume is broadcast 

back to all processors before the next iteration of 3-D projection matching begins. 

3.  Implementation and Performance

In this section, we discuss the implementation of the parallel 3-D projection matching algorithm 

described in Section 2.  We will also report the parallel performance of the algorithm for two 

different test problems on three different types of machines listed in Table 1.  Table 1 also 

provides the single-processor peak performance characteristic of each system.  The sustained 

single-processor performance of SPIDER on these machines depends on the combination of CPU 

speed, the number of instructions issued per clock cycle (which is reflected in the number of 

gigaflops per second), the cache and memory sizes, the memory bandwidth, the compiler, and the 

compiling options used (Table 2).  For the purpose of this paper, we did not try to tune the SPIDER 

code or the compiling options to achieve the optimal single-processor performance because we are 

more interested in the parallel performance.  The parallel scalability of the MPI-enabled SPIDER 

is affected by the performance of the network hardware, which we document in Table 3. 

In addition to trying to achieve the goal of enabling SPIDER to run efficiently on a 

distributed-memory parallel computer, we also made an effort to ensure that the MPI version of 

SPIDER is easy to use.  In particular, the parallel implementation of SPIDER commands strictly 

preserves the existing interactive SPIDER command line interface.  As a result, users do not need 

to modify their SPIDER batch scripts in order to use the MPI version on a distributed-memory 
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parallel machine.  This feature frees the user from the usually demanding task of learning how to 

write a parallel code. 

The interactive mode of SPIDER allows the user to type specific SPIDER commands represented 

by a few letters on the command line after a SPIDER session is launched.  SPIDER would prompt 

the user to enter additional parameters and/or output filenames based on the command the user 

types in.  In Figure 2, we show an example of a SPIDER interactive session in which a set of 

experimental images contained in a file named expimg  are aligned against reference images 

contained the file refprj .

Instead of entering one command or one parameter at a time, a user can store a sequence of 

SPIDER commands along with the parameters required by each command in a file and pass it to 

SPIDER on the command line.  In this case, SPIDER will interpret the commands (including 

do-loops) using a built-in command interpreter and parameters stored in the file and execute them 

(Frank et al., 1996).  This processing mode is usually referred to as the batch mode.  Because 

SPIDER contains condition and branch statements such as IF , THEN,GOTO and other 

programming constructs such as expression evaluation and procedures, it can be viewed as a 

primitive programming language.   Hence the file that contains a list of SPIDER commands is 

often referred to as a SPIDER batch script. 

In the sequential version of SPIDER, a command-line parser is implemented within the top level 

SPIDER subroutines to interpret a list of user-entered commands (either through the command line 

interface or through a SPIDER batch file.)  When the parser recognizes a legal SPIDER command, 

it usually transfers control to a specific subroutine to handle the desired task.  The subroutine may 

continue to parse the next few lines to collect input parameters and output filenames.  However, 

each subroutine accomplishes a well defined task organized in a hierarchical fashion.

The modular design of the SPIDER software makes our parallel implementation of the 3-D 

projection matching method relatively easy.  Our implementation reuses most of the SPIDER 

computational kernels with slight modifications to accommodate data distribution and collective 

communication.  We use the communication primitives provided in MPI to manage data 

distribution and task synchronization.  The MPI application program interface (API) has become a 

widely adopted standard for distributed-memory parallel programs.  It is supported by almost all 
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parallel computer vendors.  Several highly efficient public-domain implementations of the MPI 

library are also available, and can be easily installed on most Linux clusters.  In this paper, we use 

LAM-MPI (Burns et al., 1994) on the Xeon clusters, MVAPICH (Liu et al., 2004) on the Opteron 

cluster and the IBM proprietary implementation of the MPI on the IBM SP Power5 systems. 

Two datasets are used to measure the performance of the parallel alignment and reconstruction 

procedures.  In Table 4 we give the image size, the number of experimental images and the number 

of reference images generated.  The TFIID dataset (Andel et al., 1999) is a relatively small dataset

that does not have multiple defocus groups (Table 4).  The RNAPII dataset described in 

(Craighead and Asturias, 2003) contains multiple defocus groups of larger images.  However, for 

the purpose of measuring the performance of alignment and 3-D reconstruction, we chose the 

defocus group that contains the largest number of experimental images (Table 4).  Because in the 

strategy tested with the MPI-enabled SPIDER one defocus group of images is processed at a time, 

the parallel performance of the code is determined by the performance of the alignment and 3-D 

reconstruction within each group.  It is not affected by the number of defocus groups. 

3.1. Parallel Alignment

In our MPI implementation, we assume the number of processors (ncpus ) used in the 

computation is fixed by the user.  Each processor is assigned a distinct process identification 

number upon an MPI initialization call MPI_INIT() .  We will use mypid  to denote this 

identification number.  Many SPIDER modules read images and volumes from the disk.  In the 

MPI implementation, all the disk I/O operations are performed by a single processor. 

When the amount of memory available on each processor is sufficient to hold the entire set of 

reference images, the parallel implementation of the SPIDER AP SH command reads all reference 

images from a single processor, which we will call the master.  The master processor then 

broadcasts these images to all other processors through a call MPI_BCAST() .  Details on the 

calling sequences of all MPI subroutines can be found in (Gropp and Snir, 1998). 

The number of experimental images is typically very large (currently in the range of 10,000 to 

500,000), so usually it is not possible to place all of them in the memory of a single processor.  
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Instead, in our MPI implementation of the 3-D projection matching method, these images are read 

into a buffer incrementally by the master processor and sent to other processors through a 

point-to-point communication call MPI_SEND() .  All other processors use the MPI_RECEIVE()

call to receive data from the master processor.  An IMG_LOC array is allocated on each processor 

to hold a subset of images assigned to that processor.  The master processor needs to allocate space 

for both the I/O buffer and the IMG_LOC array, and the images assigned to the master processor 

are copied into the IMG_LOC array after they are read into the buffer.  For a homogeneous parallel 

computing system where all processors are of the same type and speed, a uniform partition of the 

experimental images is used.  The pseudocode shown in Figure 3 illustrates how data distribution 

is carried out in our MPI implementation of the orientation search.  Such a simple synchronized 

read and distribution scheme also allows the user to place image data on a local disk which 

sometimes has better I/O performance.  It is possible to improve this scheme by eliminating the 

extra buffer space or by making use of MPI-IO functions.  However, because data distribution 

currently does not represent a significant amount of communication overhead, we will not discuss 

advanced data distribution schemes here.

Once each processor has received its portion of the experimental images, very little modification is 

required to initiate the parallel alignment.  Instead of passing all experimental images stored in the 

memory one by one to the alignment module, the MPI implementation passes the distributed 

images to the same module on each processor.  As a result, each processor will execute the same 

alignment procedure, although on different images.  In Figure 4 we provide a code snippet 

comparison between the sequential code and the MPI-enabled parallel code.  Notice that in the 

MPI-enabled code, the loop index IMI  varies from 1 to NIMG_LOC, where NIMG_LOC is the 

number of images that have been distributed to a local processor (different processors may have 

different NIMG_LOC values if NIMG is not divisible by ncpus ).  Also notice that the orientation 

parameters are returned in the local array DLIST_LOC instead of DIST .

In Figure 5, we show the wall-clock time consumed by the parallelized SPIDER multi-reference 

alignment on three different computing platforms listed in Table 1.  The alignment was performed 

on the TFIID data set.  We executed the alignment command using different numbers of 

processors to assess the parallel scalability of the alignment computation.  It is easy to observe 

from Figure 5 that the MPI-enabled alignment procedure scales linearly with respect to the number 
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of processors used on all three platforms.  We should highlight the fact that on both the Opteron 

and the Power 5, executing the command in parallel by using the MPI-enabled SPIDER on 64 

processors reduces the wall-clock time required in the alignment of the TFIID dataset from two 

hours to roughly two minutes representing a 60-fold speedup.  On the Xeon cluster, which has a 

faster CPU clock but smaller cache and lower memory bandwidth, the speedup from four hours to 

4 minutes is also linear.  We should note that the wall-clock time reported in Figure 5 includes the 

time used to distribute experimental images, which is negligible in all cases.   Similar performance 

is observed when the same test is preformed using the RNAPII dataset. 

3.2.  Parallel 3-D Reconstruction

A number of 3-D reconstruction algorithms are implemented in SPIDER (Penczek et al., 2004).

Both the direct Fourier inversion method (BP 3F ) and the iterative reconstruction methods such as 

SIRT (BP RP) and Conjugate Gradient (BP CG) have been parallelized using MPI.  We will focus 

on the parallelization of the iterative reconstruction methods in this paper because they are often 

the recommended choice and they tend to be more time-consuming than the direct Fourier 

inversion. 

In each iteration of SIRT or CG, we perform m projection and back-projection operations, as 

indicated in Section 2, where m is the number of experimental images used in the reconstruction.  

Because the orientation parameters returned from the parallel alignment procedure are distributed 

on different processors, the projection of an intermediate 3-D volume f̂  in directions specified by 

the updated orientation parameters is automatically parallelized by performing line integrations of 

f̂ along the projection directions specified by the distributed Euler angles.  When the intermediate 

3-D volume is replicated on each processor, no communication is required in the projection 

operation.  However, the back-projections from distributed 2-D images must be added together 

within a single 3-D volume.  The accumulated volume must then be broadcast to all processors 

before the next iteration can begin.  By using MPI, the merge of the partial sum and the broadcast 

of the accumulated volume can be accomplished with a single MPI call, MPI_ALLREDUCE().

Most MPI libraries employs buffering techniques and tree-based algorithms to reduce the volume 

of data transfer in such an operation (Bernaschi and Iannello, 1998), so the use of the 
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MPI_ALLREDUCE() call provides optimal communication performance and simplifies the 

coding for such global communication. 

In Figure 6 we show the performance of the parallel SIRT reconstruction algorithm (BP RP)  on 

three different platforms when it is used to compute a 3-D reconstruction on the TFIID dataset.  In 

this case, linear scalability is achieved on both the Opteron cluster and the IBM SP (Power5).  The 

amount of communication required in the collective communication call MPI_ALLREDUCE() is 

negligible.  This is due to the high bandwidth of the communication networks installed on these 

systems.  On the Xeon cluster, which has a network with much lower bandwidth, the parallel BP 

RP command only scales linearly up to 8 processors.  But there is still noticeable reduction in 

wall-clock time when the command is executed in parallel on 16 processors.  Beyond that point, 

the cost of the collective communication increases significantly and the wall-clock time consumed 

by the 64-processor run exceeds those consumed by the 16- and 32-processor runs. 

Analysis of Figure 6 reveals the potential communication bottleneck associated with the 3-D 

reconstruction step.  If the parallel computation is performed on a dataset consisting of m images 

using p processors, the ratio of computation over the communication volume is m/p, which is 

independent of the image size.  As we increase p while holding m constant, the 

computation/communication ratio will decrease.  Such a reduction will ultimately lead to 

performance degradation in the parallel 3-D reconstruction even on hardware with very efficient 

network connection.  This observation indicates that, depending on the hardware used and the size 

of the dataset processed, other data processing strategies might be considered if performance 

becomes an issue.  Sometimes it may be more efficient to use a subset of the available processors 

in the 3-D reconstruction step to reduce the communication overhead.  Such a decision can be 

made automatically at runtime based on the estimated ratio of computation over communication. 

When the estimated ratio is below a predefined threshold, a separate communication subgroup can 

be created by using the MPI function MPI_GROUP_CREATE( ), and the 3-D reconstruction can 

be computed within such a subgroup with improved efficiency. A user does not need to 

redistribute data manually.
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3.3. Running a Complete Refinement Procedure in Parallel 

It is worth noting that the 3-D projection matching algorithm is only available in the form of a 

SPIDER batch program which contains a refinement loop that repeatedly invokes both the 

multi-reference 2-D alignment and 3-D reconstruction commands.  In addition to these commands, 

the batch program also contains other basic input/output (I/O) and image manipulation commands.  

The parallelization of the multi-reference 2-D alignment and 3-D reconstruction procedures 

described in Sections 3.1 and 3.2 represents the first step in our effort to enable SPIDER to 

perform seamlessly and efficiently on a distributed-memory parallel-computer system.  As the 

wall-clock time spent in these calculations is reduced through parallelization, other SPIDER 

operations that currently do not take a large percentage of overall time will become the major 

timing contributors in the performance profile.  The parallelization of some of these operations 

will be relatively easy, while the parallel implementation of others may require major changes in 

SPIDER design or involve changing the way SPIDER batch programs are written by a user.  We 

will discuss some of these issues in this section and propose some directions for future 

development in the next section.  Before we begin, let us take a look at how the current MPI 

version of SPIDER performs on a complete refinement of the TFIID data set.  We emphasize the 

fact that our parallel refinement does not require the user to make any changes to the existing 

SPIDER batch programs.  Once MPI is installed and the MPI version of the SPIDER (called 

spider_mpi ) is compiled, the user simply types, for example, 

mpirun -np 16 spider_mpi prj @b98 

in order to execute the batch program b98  using dataset designated by the extension prj  and the 

MPI version of SPIDER on 16 Opteron processors. 

It is easy to observe from Figure 7 that the use of MPI-enabled SPIDER significantly reduces the 

runtime of the refinement when multiple processors are used on a cluster.  However, the speedup 

in refinement is not linear, especially when the number of processors used exceeds 8. 

A trivial reason why the parallel refinement procedure was not able to achieve linear scalability 

when a large number of processors are used is that the tested refinement procedure contains serial 

operations.  In particular, the refinement strategy employed in this experiment separates the search 
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for optimal Euler angles from the search for optimal translational parameters (shifts).  The Euler 

angle search is parallelized; however, the translational alignment is implemented at the SPIDER 

batch script level.  To be specific, the refinement batch file contains a SPIDER loop in which each 

image is rotated (with the SPIDER command RT SQ), cross-correlated with the selected reference 

image (SPIDER command CC N), and the peak of the cross-correlation function is found (SPIDER 

command PK) to yield the necessary translation.  These simple image manipulation operations 

represent a small percentage of the total runtime when SPIDER is executed on a single processor.  

However, when the MPI-enabled SPIDER is executed on 64 processors, the high efficiency of the 

parallelized section makes these simple operations the most time-consuming part of the 

computation. 

A less obvious reason that contributed to the sub-optimal parallel performance of the refinement 

procedure (when a large number of processors are used) is related to how I/O is implemented in the 

MPI-enabled SPIDER.  The I/O operations involved in command-line interpretation are 

intrinsically sequential and do not need to be parallelized.   Ideally, we can designate one processor 

to perform these operations and keep all other processors idle until a subroutine that contains 

parallel computation is invoked.  However, such a scheme will amount to extensive changes in 

SPIDER source code because command line parsing operations are, to some extent, fused with the 

computational modules, especially those that are used to pass the user-defined parameters, do-loop 

indices etc. 

To simplify the MPI implementation, we have taken an alternative approach in which user-entered 

commands are interpreted by all processors.  That is, all processors follow the same execution path 

until a parallelized command is encountered.  At that point, one of the processors may be 

designated to read and distribute image data while the other processors wait to receive image data.  

Once data distribution is completed, all processors resume simultaneous execution of the same set 

of instructions on different pieces of data.  Under this scheme, non-parallelizable tasks that do not 

take much time are executed by all processors.  Originally, we allowed all processors to read from 

the same file simultaneously while allowing only one processor to write to a file.  Although this 

scheme works well most of the time, it can potentially fail when a read occurs right after a write.  

Due to I/O buffering and delays in some file systems, one processor may not immediately see a file 

created by a different node on the same network.  This file coherence problem caused the previous 
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version of MPI-enabled SPIDER to occasionally crash in an unpredictable manner.  In the current 

implementation, we synchronize all I/O operations to allow only one processor to read and write.  

The data read by a single processor is broadcast to all other processors.  This approach requires 

only a small number of changes at the lowest-level SPIDER I/O routines.  The downside of this 

approach is that it introduces more communication overhead.  Since each read is now followed by 

a broadcast, the latency cost increases significantly especially when a SPIDER non-image file that 

contains many parameters (such as angles) is read.  In Figure 8 we give a snapshot of the 

communication pattern during the execution of a SPIDER procedure on 16 processors.  The red 

blocks represent segments of time during which communication occurs.  As we can see from this 

figure, communication occurs frequently throughout the time interval shown in the figure as a 

SPIDER command carries out some computation on data read from a non-image file line by line.   

4.  Discussion 

We have used MPI to successfully parallelize the two most time-consuming SPIDER operations: 

the multi-reference alignment and 3-D reconstruction operations.  These two operations jointly 

constitute the algorithmic core of the 3-D projection matching method used for refinement of EM 

structures in single particle reconstruction projects.  We have demonstrated that the MPI-enabled 

multi-reference alignment and 3-D reconstruction SPIDER operations perform extremely well on 

a variety of distributed-memory parallel computer systems. In particular, the performance of the 

MPI implementation of these operations scales almost linearly with respect to the number of CPUs 

used on Linux clusters built with commodity processors and high speed interconnect.  

The SPIDER interactive interface allows users to easily experiment with and combine different 

SPIDER commands to accomplish various image processing tasks.  We generally tried to preserve 

this feature in the MPI version.   However, it is not the most efficient way to carry out a large-scale 

EM structure refinements due to the overhead incurred in command line interpretation.  

Furthermore, the presence of condition and branch statements such as IF  and GOTO makes the 

parallelization of SPIDER a difficult task.  This type of problems are not limited to the SPIDER 

software package, but pertain to other interpretive language and programming environments such 

as MATLAB (Gilat, 2004) also.  To further improve the parallel performance of the MPI version 
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of SPIDER, a user may have to modify their SPIDER batch program to replace SPIDER batch 

loops and branches with simplified commands.  However, such a modification should simplify the 

user’s batch program. 

Additional significant performance improvement of SPIDER system could be achieved by 

exploiting the do-loop level of parallelism that appears in a SPIDER batch script.  Most of these 

do-loops are used to manipulate a stack of images. Conceptually, because the manipulation of one 

image is completely independent from another, these SPIDER loops should be parallelized by 

distributing images to different processors and performing the listed simple operations 

simultaneously on all processors.  However, such type of loop parallelism is difficult to implement 

at the SPIDER batch file level because the command line parser is written in a high-level 

programming language (FORTRAN) and embedded in computational modules, so the 

parallelization has to be built into the system.  

Our future work will also address issues of memory usage.  In the current MPI implementation of 

the SPIDER multi-reference alignment procedures we assume each processor has sufficient 

amount of memory to hold the entire set of reference projection images.  When the image size 

becomes large and when the angular separation between the projection images becomes small, the 

number of reference images becomes large.   In effect, it may not be possible to replicate all 

reference images on all processors.  The current solution is to save the reference images in a disk 

file and read one reference image at a time into the memory during the parallel alignment process.  

This approach introduces a significant amount of I/O overhead and thus slows down the alignment 

process.  There are two alternatives which we will implement in the future.  One solution is to 

generate the reference projections in parallel, so that they are distributed among different 

processors.  These projection images will be passed around in a cyclic fashion during the parallel 

alignment process. Special care must be taken to avoid a dead lock in communication. Another 

simpler solution is to have all processors generate reference projections incrementally, so that only 

a subset of the reference projections is stored in memory at a given time during the alignment of 

each experimental image.  Unfortunately, both approaches would require combining the 

computation of the reference projections with the alignment procedure in a single command.  This 

would force users to modify their existing SPIDER batch programs.  However, an advantage is 

that such a change should simplify their batch programs. 
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The issue of memory limitation also arises in the 3-D reconstruction procedure.  The iterative 

reconstruction algorithms implemented in SPIDER require storing three real-type volumes on 

each processor.  The direct inversion reconstruction algorithms require padding volumes with zero 

to double the size which result in eight-fold increase of the memory requirement (Penczek et al.,

2004).  As the image size increases, these volumes must be distributed among different processors.  

Such a change in distribution would require additional communication.  

The MPI version of SPIDER can be used on a heterogeneous cluster when an MPI library capable 

of handling different flavors of portable operating system interface (POSIX) and data format (such 

as the LAM/MPI (Burns et al., 1994)) is installed.  However, because in the current data 

distribution scheme implemented in the MPI version of the SPIDER we assume all processors run 

at the same speed, using the MPI version of SPIDER on a cluster of processors with vastly 

different performance is generally not efficient.  In such a computing environment, a finer-grained 

client-server parallel computing model, implemented as the SPIDER PubSub system, may be 

more appropriate. 

5.  Availability of the Software

The MPI version of SPIDER is included in the current SPIDER release that can be downloaded 

from http://www.wadsworth.org/spider_doc/spider/docs/spider.html.  There is no separate source 

for the MPI implementation; all MPI-related codes are inserted using the #ifdef  preprocessor 

macros.  To generate an MPI version of the executable, one can simply modify the Makefile for 

creating the sequential executable and insert -DUSE_MPI in the compiler option.  Sample 

Makefiles are provided in the SPIDER source directory.   
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Tables 

Table 1.  The single node hardware performance of the parallel computer systems used in the 

experiment. 

machine clock speed Gflops CPUs/node cache memory 

Intel Xeon-EMT 3.4 Ghz 6.8 2 512KB 4GB 

AMD Opteron 2.2 Ghz 4.4 2 1MB 4GB 

IBM Power5 1.9 Ghz 7.6 8 32MB 32GB 

Table 2.  Compilers and compiling options used on different computers. 

machine compiler options 

Intel 
Xeon-EMT 

ifort (Intel) -arch pn4 -O3 -WB -mp -fpp2 -auto

-pc64 -w95 -tpp7 -xW -assume byterecl

AMD Opteron pathf90 (Pathscale) -march=opteron -O3 -byteswapio

IBM Power5 xlf90 (IBM) -O3 -qarch=pwr5 -qstrict -qtune=pwr5 -qfixed=72
-qnosave
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Table 3.  The network hardware performance on different computers used in our experiments. 

machine connection bandwidth latency 

Intel Xeon-EMT gigabit ethernet 125MB/s sµ40  

AMD Opteron InfiniBand 620MB/s sµ5.4

IBM Power5 Federation HPS 2GB/s sµ0.5

Table 4.  The number and size of images associated with the data sets used in the computational 

experiments. 

name image size  number of 
experimental  images 

number of 
reference images 

TFIID 64 4,418 799 

RNAPII 128 2,887 5,088 

Figure Captions 

Figure 1.  A flowchart of the 3-D projection matching algorithm.  The rectangular boxes labeled by 

‘reference projections’, ‘Euler angles and shifts’, ‘experimental images’, as well as the cylinder 

shaped object labeled by ‘3-D model’ represent either the input data or intermediate data produced 

by operations described in oval shaped boxes (such as ‘project’, ‘align’ and ‘3-D reconstruction’).  

The shaded oval boxes correspond to operations that have been parallelized in the MPI version of 

SPIDER. 

Figure 2.  An interactive SPIDER session in which the SPIDER 2-D multi-reference alignment 

command AP SH is used to align a set of experimental images contained in the file expimg using 
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images contained in the file refprj as the reference.  Various parameters are passed through the 

interactive command line interface shown here.  The output of the alignment is return in the file 

named apmq002.  

Figure 3.  A piece of pseudocode that shows how data distribution is achieved in the MPI version 

of the SPIDER.  Here we assume the master processor which has the identification number 

(mypid = 0) read experimental images incrementally into a buffer and send them to different 

processors while the other processors whose identification numbers are greater than 0 receive a 

subset of the experimental images from the master processor.  

Figure 4.  A code snippet that shows the parallelization of the 2-D multi-reference alignment 

procedure in SPIDER using MPI requires only a slight modification in the arguments passed into 

the computational module APRQ2D.

Figure 5.  The parallel performance of the SPIDER AP SH command measured in wall-clock time 

on three different platforms when it is used on the TFIID dataset. 

Figure 6.  The parallel performance of the SPIDER BPRP 3-D command (which implements the 

SIRT 3-D reconstruction method) measured in wall-clock time on three different platforms. 

Figure 7.  The parallel performance of a complete SPIDER 3-D projection matching refinement 

applied to the TFIID dataset. 

Figure 8.  The communication pattern within an MPI-enable SPIDER run.  The figure shows a 

small timeline display window. Time increases from left to right. Each horizontal green bar 

represents a processor. The thin lines extending between the bars represent the individual 

messages. Time spent in an MPI call is shown in red, and time spent in SPIDER computation is 

green. 
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.OPERATION: AP SH  

.ENTER TEMPLATE FOR REFERENCE IMAGES: refprj@*****  

.ENTER FILE NUMBERS OR SELECTION DOC.  FILE NAME: 1 -799  

.TRANSLATION SEARCH RANGE, STEP SIZE: 4 1  

.FIRST LAST RING: 8 40  

.REFERENCE IMAGES ANGLES DOCUMENT FILE:final/defgrp 001/angvoea  

.ENTER TEMPLATE FOR IMAGE SERIES TO BE ALIGNED: exp img@*****  

.ENTER FILE NUMBERS OR SELECTION DOC.  FILE NAME: 1 -2000  

.EXPERIMENTAL IMAGES ALIGNMENT DOCUMENT FILE: *  

.RANGE OF PROJECTION ANGLE SEARCH ANGLE CHANGE THRESHOLD: 0.00  

.CHECK MIRRORED POSITIONS (0=NOCHECK / 1=CHECK)?: 1   

.OUTPUT ALIGNMENT DOCUMENT FILE: final/defgrp001/ap mq002   

Figures 2-4
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if (mypid = 0) 
for i = 0, 1, …, ncpus-1 

1. determine the global indices (ibeg and iend) of t he 
first and last images that will be assigned to 
processor i; 

2. for j = ibeg,…, iend 
read the jth experimental images into buffer; 

endfor
3. if (i>0) 

send data in the buffer to processor i; 
else

copy data in the buffer to the IMG_LOC array; 
endif

endfor
else

receive data from mypid=0 into the IMG_LOC array; 
endif
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Before:  

DO IMI = I, NIMG
   CALL APRQ2-D(IMG(1,1,IMI),...,DLIST(3,IMI),DLIST(4,IMI),...)
ENDDO

After:  

DO IMI = I, NIMG_LOC 
   CALL APRQ2-D(IMG_LOC(1,1,IMI),...,DLIST_LOC(3,IMI), 
               DLIST_LOC(4,IMI),...) 
ENDDO
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